
Physics H7C Fall 1999 Solutions to Problem Set 11 Derek Kimball

“Civilization as we know it is based on ten ideas. These are Newton’s three laws,
the three laws of thermodynamics and Maxwell’s equations. Everything that you
see around you which differentiates modern times from the past is based on these
concepts. Soon, Schrodinger’s equation will join these ten ideas. People will tell you
that civilization is about art, or literature, or architecture... but these components
of civilization have more or less been the same for thousands of years. The only
real difference between today and thousands of years ago is physics. If civilization
collapsed tomorrow, we could rebuild it in the same fashion armed with these ideas.”

- Prof. Seamus C. Davis, U.C. Berkeley.

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 1 Rohlf 8.41

Here we wish to show that the average value of 1/r is independent of the orbital
angular momentum for the hydrogen atom. This result is straightforward if we
introduce the virial theorem (see, e.g., B.H. Bransden and C.J. Joachain, Intro-
duction to Quantum Mechanics, pgs. 227-228), which states (in one particular
form) that for a spherically symmetric potential V (r) ∝ rn one has for a stationary
state:

2〈T 〉 = n〈V (r)〉,
where T is the kinetic energy. This is analagous to a classical result of the same
name. The average potential energy for hydrogen is proportional to 〈1/r〉, as is
the kinetic energy and hence the total energy from the virial theorem. We know
that the total energy for the hydrogen atom (from the Bohr model) is independent
of l and depends only on the principal quantum number n. Consequently, 〈1/r〉 is
also independent of the orbital angular momentum.

Problem 2 Rohlf 9.3

We seek a totally antisymmetric wavefunction Ψ for 3 electrons in terms of ψa(r1),
ψb(r2) and ψc(r3). The wavefunction must be totally antisymmetric because we
have three identical fermions. Such a wavefunction is given below. It is easily
verified that under particle interchange it flips sign.

Ψ =
1√
3!
[ψa(r1)ψb(r2)ψc(r3)− ψa(r1)ψc(r2)ψb(r3) + ψb(r1)ψc(r2)ψa(r3)

−ψb(r1)ψa(r2)ψc(r3) + ψc(r1)ψa(r2)ψb(r3)− ψc(r1)ψb(r2)ψa(r3)] (1)

Problem 3 Rohlf 9.10

An atom has two electrons in the d-subshell. What are the possible values of total
z-angular momentum?

Well, we know that the total orbital angular momentum ltot can range from l1+ l2
to |l1 − l2|. Thus ltot = 4, 3, 2, 1, 0. If ltot is even, then the spatial part of the
wavefunction Ψspatial is symmetric, and if ltot is odd, then Ψspatial is antisymmetric.

With two electrons, the total spin can be stot = s1+ s2 = 1, 0. If stot = 1 then the
spin function Ξspin is symmetric. The total wavefunction Φtotal = Ψspatial · Ξspin

must be antisymmetric since we are dealing with identical fermions. Therefore if
stot = 1 then Ψspatial must be antisymmetric, meaning that ltot is odd (1 or 3). In
this case the total angular momentum j can take on the values j = 4, 3, 2, 1, 0.

If stot = 0 then the spin function Ξspin is antisymmetric, and Ψspatial must be
symmetric. In this case ltot is even (0, 2 or 4). The possible values of j are 0, 2 or
4.

The largest j value possible is 4, so the possible mj values are:

mj = −4,−3,−2,−1, 0, 1, 2, 3, 4

Problem 4 Rohlf 9.25

(a)

Sodium atoms are placed in a magnetic field of 1.5 T. The Zeeman splitting of the
ground state (n = 0, l = 0) is given by the shift of energy due to the different spin
states the single valence electron can have. Energy shifts are

E± = ±µBB

where µB is the Bohr magneton. The numerical value for the splitting is given by

∆E = 2µBB = 2(6× 10−5 ev/T)(1.5 T) = 1.8× 10−4 eV.

(b)

If 1/3 of the sodium atoms are in the higher energy state, then the Boltzmann
factor

e−∆E/(kT ) =
1/3
2/3

= 1/2.
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From which we calculate

kT =
∆E

ln 2
= 2.5× 10−4 eV.

Hence,

T ≈ 2.9 K

(c)

Same as above:

e−∆E/(kT ) = 49/51.

From which we calculate
kT = 4.4× 10−3 eV

and

T ≈ 51 K

Problem 5 Rohlf 9.31

A sample of Na atoms are placed in a 1.0 T magnetic field. We calculate the energy
shifts for the 3s1/2, 3p1/2 and 3p3/2 states. Note that in this case µBB = 6× 10−5

eV/T.

For the 3s1/2 state (s = 1/2, l = 0, and j = 1/2), the Lande factor is given by:

gL = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1) = 2
.

Therefore the energy shifts, given by

∆E = µzBz = gLµBBmj

are
∆E = ±µBB.

Similarly, for the 3p1/2 state, gL = 2/3 so

∆E = ±1
3
µBB.

For the 3p3/2 states gL = 4/3 so

∆E = ±2
3
µBB, ± 2µBB.
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